
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13977  | https://doi.org/10.1038/s41598-022-18351-0

www.nature.com/scientificreports

Quantum‑behaved particle swarm 
optimization based on solitons
Saeed Fallahi1* & Mohamadreza Taghadosi2

This paper introduces a novel variant of the quantum particle swarm optimization algorithm based on 
the quantum concept of particle-like solitons as the most common solutions of the quantum nonlinear 
Schrödinger equation. Soliton adaptation in external potentials is one of their most remarkable features 
which allows them to be stabilized even without a trapping potential, while the potential must be 
bounded for quantum particles to be localized. So we consider the motion scenario of the present 
algorithm based on the corresponding probability density function of quantum solitons. To evaluate 
the efficiency, we examine the proposed algorithm over a set of known benchmark functions, including 
a selection of test functions with different modalities and dimensions. Moreover, to achieve a more 
comprehensive conclusion about the performance, we compare it with the results obtained by particle 
swarm optimization (PSO), standard quantum-behaved particle swarm optimization QPSO, improved 
sine cosine Algorithm (ISCA), and JAYA optimization algorithm. The numerical experiments reveal 
that the proposed algorithm is an effective approach to solving optimization problems that provides 
promising results in terms of better global search capability, high accuracy, and faster convergence rate.

Dealing with complex issues arising from the real world has long been a challenging task. Besides, there are 
too many intractable optimization problems along with the increasing advances in science and technology that 
are difficult to solve by traditional methods. Researchers are always looking for efficient algorithms to handle 
these problems which mostly are non-differentiable and non-continues. Therefore, the use of metaheuristic 
optimization algorithms is more than ever needed. In recent years a wide number of metaheuristic optimization 
algorithms are being introduced every day1,2. These metaheuristic optimization techniques are generally classi-
fied into the following groups, including

Evolutionary algorithms (EA) which are based on natural evolution such as genetic algorithm (GA) and dif-
ferential evolution3.
Swarm intelligence algorithms (SI) that simulate the behavior of animals such as particle swarm optimi-
zation (PSO)4, salp swarm algorithm5, symbiotic organisms search6, sine cosine algorithm7, and Dolphin 
echolocation8.
Classical/modern physics-based (PB) algorithms which are developed based on physical laws in real-life such 
as simulated annealing9, gravitational and search algorithm10.
Human-based methods motivated by human co-operations and human behavior in communities11. Such as 
imperialist competitive algorithm12 and teaching-learning-based optimization algorithm13.
Hybrid algorithms (HA) which consider different combinations of other algorithms14.

 The physics-combined version of particle swarm optimization (PSO), which lies in the SI-PB hybrid category, has 
indicated many appropriate results applicable in different fields of physics and engineering including electromag-
netism, gravitation, fluid mechanics, etc. Over the past few decades, the PSO technique as a metaheuristic method 
has attracted a great deal of interest due to its capability of solving challenging optimization problems15–17. 
Therefore many variants of this algorithm have been proposed and it has achieved great progress in both theory 
and application. Jain et al.18 provided a literature review of PSO during 1995–2017 on the development of PSO, 
its improvements, variations, and applications.

One such successful PSO variant which is motivated by quantum mechanics is quantum-behaved particle 
swarm optimization (QPSO). The main idea of emerging quantum probability laws into optimization algorithms 
was to achieve an oriented and directional search process instead of a completely randomized one. Sun et al.19 
introduced QPSO in which the particles move through a quantum delta potential well with quantum behavior. 
They modified the PSO formula and used the average position of all particles’ personal best positions in swarm 
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instead of velocity. The authors also proved that this combination guarantees finding the global optimal solution. 
QPSO as a probabilistic algorithm has fewer parameters and high capability in solving challenging optimiza-
tion problems while being simple and easy to implement. Since then, many studies have been done on QPSO. 
Fang et al.20 provided a literature review of QPSO, its improvements, convergence speed, variations, robustness, 
and applications until 2010. In the course of QPSO evolution, movement behavior, as a key factor in algorithm 
performance, has attracted a lot of attention in recent years14,21,22. In most of them, the motion of a quantum 
particle under bounded potentials has been considered.

In this paper, as an extension of this approach, we show that it is possible to use localized wave packets in space 
instead of quantum particles and focus on the swarm optimization techniques inspired by the movement behavior 
of particle-like solitons which are the analytical solution of the nonlinear Schrödinger (NLS) equation. The NLS 
equation has been derived in many areas of physics. The mathematical theory of this equation is a broad and very 
active field of mathematical research. In this equation, the potential term depends on the wave function itself. It is 
integrable via the Inverse Scattering Transform (IST) and admits multisoliton solutions. It has an infinite number 
of conserved quantities and possesses many other interesting properties. Solitons, as one of the NLS exact solutions, 
are ubiquitous in many fields (such as quantum computation, nonlinear optics, plasmas, Bose-Einstein condensate, 
genome engineering, etc.). They are stable and localized wave packets that behave like particles and maintain their 
shape while moving at a constant speed. They also remain unchanged during mutual collisions (except possibly for 
a phase shift) and can reconstruct themselves through the dispersion and nonlinearity of media.

Altogether, according to the mentioned features, it is expected that the new motion scenario which considers 
the quantum soliton probability density function, allows the particle to have a larger potential space to search 
and therefore less likely to be stuck in local optima.

The rest of this paper is organized as follows. A brief introduction of PSO, basic principles of QPSO, a review of Soli-
tons, and a description of the proposed algorithm are presented in the “Methodology” section. “Experimental results” 
section includes the results of optimization and a comparison with some well-known algorithms over 21 benchmark 
functions. Finally, the conclusions and the future research directions are given in “Summary and conclusion” section.

Methodology
Particle swarm optimization (PSO).  Particle swarm optimization belongs to a branch of the SI algorithm 
that was first intended for simulating social behavior and then developed for constrained and unconstrained 
problems and also used in discrete and continuous optimization problems. It was first developed by Kennedy and 
Eberhart in 19954. The main idea of the PSO algorithm is to share the best position of the whole swarm in every 
generation and then move them toward their own best-known position and the entire swarm’s best-known posi-
tion in the search space simultaneously. Then, particles are updated according to the following equation:

where xij(t) and vij(t) are the value and velocity of jth variable of the ith particle during the tth iteration, respec-
tively. M is the size of the population, D is the dimension, pBesti,j is the jth variable of the ith best solution so far, 
gBestj is the jth variable of the global best particle in the swarm, c1 , and c2 are “Personal Learning Coefficient” 
and “Global Learning Coefficient”, respectively, which are predefined, w is a constant, known as “Inertia Weight”, 
and control the global and local search ability of PSO and r1 and r2 are random numbers in [0, 1]. This process 
iterates so as to attain the appropriate fitness or reach maximum iterations.

The pseudo-code of the PSO algorithm is illustrated in Algorithm 1.

Vi,j(t + 1) =wVi,j(t)+ c1r1

(

pBesti,j − Xi,j(t)
)

+ c2r2(gBestj − Xi,j(t)),

Xi,j(t + 1) =Xi,j(t)+ Vi,j(t + 1), i = 1, 2, . . . ,M, j = 1, 2, . . . ,D,
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JAYA algorithm.  The JAYA algorithm is a meta-heuristic algorithm recently developed for constrained and 
unconstrained problems and is also used in discrete and continuous optimization problems. It was first devel-
oped by Rao in 201623. In this algorithm, two parameters have to be initialized for any optimization problems: 
the size of the population, and the maximum number of iterations. Then initial solutions are randomly gener-
ated in the feasible region. Later on, the fitness cost of the generated solutions is calculated and the best and the 
worst solutions in the population are identified. Then each variable of every solution is updated according to the 
following equation:

where Xi,j(t) is the value of the jth variable for the ith candidate during the tth iteration, Xj,best is the value of the 
variable j for the best candidate and Xj,worst is the value of the variable j for the worst candidate. Xi,j(t + 1) is the 
updated value of Xi,j(t) and r1 and r2 are random numbers in [0, 1] . If the new solution is in a better condition 
than the current one, it is replaced by the new one. This procedure is repeated so as to achieve the appropriate 
fitness or reach maximum iterations.

Improved sine cosine algorithm.  Sine cosine Algorithm (SCA) is a physics-based algorithm and was first 
developed by Mirjalili et al. in 2016 for solving optimization problems7. The main drawback of SCA is having 
low optimization precision and local minima trapping due to its exploration and exploitation mechanism. In 
Ref.24 the authors proposed a novel strategy to overcome the weakness of the algorithm by substituting a new 
update mechanism. They proposed a new version of SCA called Improved Sine Cosine algorithm (ISCA). Simi-
lar to other meta-heuristic optimization ISCA starts the optimization process by generating the initial solutions 
randomly in the feasible region. Later on, the fitness cost of the generated solutions is calculated and the best 
solution in the population is identified. Then each variable of every solution is updated according to the sine and 
cosine functions as follows:

where Xi,j(t) is the value of the jth variable for the ith candidate during the tth iteration, Pj(t) is the jth variable of 
the best solution during the tth iteration. Xi,j(t + 1) is the updated value of Xi,j(t) and r1(t) is described as follows:

in which α and β , are positive real numbers. r2 , r3 , and r4 are random numbers in the range [0, 1] . If the new solu-
tion is in a better condition than the current one is replaced by the new one. This procedure is repeated so as to 
achieve the appropriate fitness or reach maximum iterations.

Quantum particle swarm optimization (QPSO).  Nature is essentially based on quantum mechanical 
rules, although the quantum effects are more significant in micro-scale systems. One of the fundamental con-
cepts of quantum mechanics is wave-particle duality, in which all the information about a particle (situation, 
position, velocity, energy, etc.) is described as a wave function, ψ(r, t) , corresponding to a normalized quantum 
eigenstate. From the quantum point of view, a wave packet, which is a superposition of too many waves, can 
represent a localized particle in space under a physical potential, but it is broadened to some extent due to the 
uncertainty principle. According to the Heisenberg uncertainty principle, the exact position of a quantum parti-
cle and its velocity cannot be simultaneously determined. That is true for its energy and its quantum state lifetime 
as well. Therefore, the expectation value of each quantity in quantum mechanics is represented as a probabilistic 
value, which is determined by the probability density function, |ψ(r, t)|2 , which describes the probability of a 
particle to be found in a given quantum state (a given position, momentum, energy, etc). In the last years, many 
researchers have tried to introduce quantum concepts through various mathematical frameworks and succeeded 
in employing them in optimization algorithms. The quantum particle swarm optimization (QPSO) algorithm is 
inspired by the quantum behavior of nature. The main idea behind the QPSO is to find a proper wave function, 
associated with a quantum particle in a potential field. To find the optimal solution, QPSO exploits the quantum 
probability density function to lead particles to the most likely positions (or to the most possible states in a 
more general sense). Due to the probabilistic nature of quantum mechanics, the correlation between quantum 
particles, and the mutual influence of their eigenstates, it is expected that the solution lies in the most probable 
region of the search extent. Although there is not an explicit relation between quantum features and the time 
complexity, it is expected that the solution lies in the most probable region of the search extent, resulting in better 
searching performance. The QPSO algorithm, based on some quantum potential fields, such as square well, 1D 
potential well, the 1D-quantum simple harmonic oscillator, Coulomb-like square root field, Lorentz potential 
field, and Rosen–Morse has been already used and developed by several authors14,21,22. The quantum wave func-
tions utilized in all of the mentioned studies satisfy the usual linear Schrödinger equation,

(1)Xi,j(t + 1) = Xi,j(t)+ r1
(

Xj,best − |Xi,j(t)|
)

− r2
(

Xj,worst − |Xi,j(t)|
)

,

Xi,j(t + 1) =







Xi,j(t)+ r1(t) sin(r2)
�

�

�
r3Pi,j(t)− Xi,j(t)

�

�

�
if r4 � 0.5,

Xi,j(t)+ r1(t) cos(r2)
�

�

�
r3Pi,j(t)− Xi,j(t)

�

�

�
if r4 < 0.5,

r1(t) = a

(

1−
(

t

T

)α)β

,

(2)i�
∂ψ

∂t
+ �

2

2m

∂2ψ

∂x2
− V(x, t)ψ = 0.
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On the other hand, there are many natural phenomena in physics and engineering, described by nonlin-
ear equations. The Korteweg–de Vries equation, the nonlinear Schrödinger equation, the coupled nonlinear 
Schrödinger (NLS) equation, and the sine-Gordon equation are some well-known nonlinear equations that 
have been used extensively in connection with many physical phenomena. They are exactly solvable equations 
with soliton-like solutions.

In the sequel, we present the probability density function of such problems, especially, quantum solitons with 
a self-consistent solution to the NLS equation.

Solitons.  Solitons or solitary waves are essentially the analytical solutions of physical integrable nonlinear 
partial differential equations. They are ubiquitous phenomena both in classical and quantum issues with a vast 
number of applications Classical solitons in physics are non-dispersive pulses, traveling long distances (Fig. 1a). 
One of the most interesting and unique features of solitons is having neither deformation nor attenuation during 
propagation in a nonlinear dispersive medium. Taking advantage of the nonlinearity of the medium, solitons can 
reconstruct themselves, despite dispersion effects. Quantum solitons are indeed the quantum states of classical 
solutions (Fig. 1b). They are treated as particle-like wave packets with their own coherent eigenstates and energy 
eigenvalues (Fig. 1c).The quantum solitons are one of the most common solutions of the quantum NLS equation 
which governs many quantum phenomena in physics and engineering. The usual Schrödinger equation, (Eq. 
(2)), becomes nonlinear if the potential V(x, t) depends on ψ , itself. The general standard dimensionless form of 
the NLS equation so reads,

in which i =
√
−1 , and p and q are the coefficients with a definite physical significance. Its basic soliton-like 

solution is,

(3)i
∂ψ

∂t
+ p

∂2ψ

∂x2
+ q|ψ |2ψ = 0,

Figure 1.   A comparison between soliton, quantum soliton and wave packet.

Figure 2.   Normalized soliton wave function and the associated probability density function.
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where A is an arbitrary constant related to the wave packet’s properties (amplitude, width, and frequency). A 
more general version of the NLS equation is written in terms of the Hamiltonian operator Ĥ , as follows:

In this equation, Ĥ corresponds to the related kinetic and potential energies of the system, and is a quadratic 
function of the momentum operator, p̂ = −i∂/∂x and x̂ , namely, It has a general soliton-like solution as the 
following form,

which describes a traveling soliton with the profile function F(z) in terms of a wave-type argument z25. The 
quantum NLS in its general form usually is written as,

where, c, as the coupling parameter is a real number. It is positive in the repulsive NLS and negative in the attrac-
tive NLS, which arises from the Hamiltonian,

The quantum solitons are the solutions of the attractive NLSs. Taking a quick look at the solution of a few 
problems, one can find the stationary quantum solitons to be as the following standard dimensionless form,

in which, 1/β denotes the characteristic length defined in the problem. It is worth noting that the wave function, 
ψ , has to be normalized in space, namely,

The corresponding probability density function, |ψ |2 , is given by,

plotted in Fig. 2.
As one can see in Supplementary Appendix, although the wave functions can be varied according to the given 

potential, its general form remains unchanged.
In the next part, we intend to employ the general soliton-solutions of the NLS equation in the QPSO.

Quantum soliton‑inspired optimization algorithms.  The main strategy here is exactly the same as 
the QPSO scenario proposed by many authors14,19,21,22, but with an M number of particle-like quantum soliton 
wave packets instead of quantum particles.

In Ref.26 the authors have shown that, geometrically, the best position of the particle most likely is 
located on the linear convex combination of the best local and global position known as local attractor 
Ki(t) =

(

Ki,1(t),Ki,2(t), . . . ,Ki,D(t)
)

 defined as follows

According to this trajectory analysis, we have a new movement strategy regarding the best local, pBesti (t) , 
and global position of the whole swarm, gBest(t) . The new position in this model can be updated as follows14,26,

where L denotes a displacement function depending on the characteristic length of the problem and a non-
uniform distribution function, F.

(4)ψ(x, t) = 1

2

√

2A

q

exp(iAt)

cosh( A
2p x)

,

(5)i
∂ψ

∂t
= Ĥψ + Vψ + q|ψ |2ψ .

(6)ψ(x, t) = A(x, t)F(z)eiS(x,t),

(7)i�
∂ψ

∂t
= − �

2

2m

∂2ψ

∂x2
+ 2c|ψ |2ψ ,

(8)Ĥ =
∫

(ψxψx + cψ∗ψ∗ψψ)dx.

(9)ψ = α
eiS

cosh(βx)
,

(10)
∫ +∞

−∞
|ψ |2dx = 1.

(11)|ψ |2 = α2

cosh2(βx)
,

(12)
Ki,j(t) =� pBesti,j (t)+ (1− �)gBestj (t), i = 1, 2, . . . ,M, j = 1, 2, . . . ,D,

� = c1r1

c1r1 + c2r2
.

(13)xi(t + 1) = Ki(t)+ L(Xi(t), u),

(14)L = 1

β
F.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13977  | https://doi.org/10.1038/s41598-022-18351-0

www.nature.com/scientificreports/

The characteristic length, representing a physical significance, defined as the absolute difference of average posi-
tion of all particles’ personal best positions in swarm and the current position, that is

The distribution function, F, which is implicitly related to the probability density function, proposes the most 
likely position around the local attractor point and is determined as G−1(u) , in which u is a random number 
in [0, 1], and G as a random number generator simulated by the probability density function, is assigned to u,

By substituting the probability density function of quantum solitons, |ψ |2 = α2/ cosh2(βL) , and solving for 
L, we have

(15)
1

β
=

∣

∣

∣
Xi(t)−

1

M

M
∑

i=1

pBesti (t)
∣

∣

∣
.

(16)G(L) = |ψ(L)|2
max(|ψ(L)|2) := u.

Table 1.   Benchmark functions27.

Name Function D Range fmin

F1 Dixon–Price f (x) = (x1 − 1)2 +
∑D

i=2 i

(

2x2i − x2i−1

)

30 [− 10, 10] 0

F2 Rosenbrock f (x) =
∑D−1

i=1

[

100(xi+1 − x2i )
2 + (xi − 1)2

]

30 [− 5, 10] 0

F3 Sphere f (x) =
∑D

i=1 x
2
i

30 [− 5.12, 5.12] 0

F4 Sum square f (x) =
∑D

i=1 ix
2
i

30 [− 10, 10] 0

F5 Trid f (x) =
∑D

i=1(xi − 1)2 −
∑D

i=2 xixi−1 30 [− 900, 900] − 4930

F6 Rotated hyper-ellipsoid f (x) =
∑D

i=1

∑i
j=1 x

2
j

30 [− 65.536, 65.536] 0

F7 Sum of different powers f (x) =
∑D

i=1 |xi |i+1 30 [− 1, 1] 0

F8 Styblinski–Tang f (x) = 1
2

∑D
i=1

(

x4i − 16x2i + 5xi

)

30 [− 5, 5] − 1175

F9 Schwefel f (x) = 418.9829D −
∑D

i=1 xi sin(
√
|xi |) 30 [− 500, 500] 0

F10 Rastrigin f (x) = 10D +
∑D

i=1

[

x2i − 10 cos(2πxi)

]

30 [− 5.12, 5.12] 0

F11 Griewank f (x) =
∑D

i=1
x2i
4000 −

∏D
i=1 cos

(

xi√
i

)

+ 1 30 [− 600, 600] 0

F12 Ackley f (x) = − 20 exp

(

− 0.2

√

1
D

∑D
i=1 x

2
i

)

− exp

(

1
D

∑D
i=1 cos(2πxi)

)

+ 20+ exp(1) 30 [− 32.768, 32.768] 0

F13 Levy f (x) = sin2 (πw1)+
∑D−1

i=1 (wi − 1)2
[

1+ 10 sin2 (πwi + 1)
]

+ (wD − 1)2
[

1+ sin2 (2πwD)
]

30 [− 10, 10] 0

F14 Langermann f (x) =
∑5

i=1 ci exp

(

− 1
π

∑D
j=1

(

xj − Aij

)2)

cos(π
∑D

j=1

(

xj − Aij

)2
) 30 [0, 10] − 1.9341

F15 Shubert f (x) =
(

∑5
i=1 i cos((i + 1)x1 + i)

)(

∑5
i=1 i cos((i + 1)x2 + i)

)

5 [− 10, 10] − 186.7309

F16 Schaffer N.2
f (x) = 0.5+ sin2(x21−x22 )−0.5)

[

1+0.001(x21−x22 )

]2

2 [− 100, 100] 0

F17 Michalewicz f (x) = −
∑D

i=1 sin(xi) sin
2m

(

ix2i
π

)

5 [0,π ] − 4.7033

F18 Goldstein–Price f (x) = [1+ (x1 + x2 + 1)2(19− 14x1 + 3x
2
1
− 14x2 + 6x1x2 + 3x

2
2
)]×

[30+ (2x1 − 3X2)
2(18− 32x1 + 12x

2
1
+ 48x2 − 36x1x2 + 27x

2
2
)] 2 [− 2, 2] 3

F19 Cross-in-Tray f (x) = − 0.0001

(∣

∣

∣

∣

sin(x1) sin(x2) exp

(∣

∣

∣

∣

100−
√

x21+x22
π

∣

∣

∣

∣

)∣

∣

∣

∣

+ 1

)0.1

2 [− 10, 10] − 2.0626

F20 Beale f (x) = (1.5− x1 + x1x2)
2 +

(

2.25− x1 + x1x
2
2

)2 +
(

2.625− x1 + x1x
3
2

)2 2 [− 4.5, 4.5] 0

F21 Holder Table f (x) = −
∣

∣

∣

∣

sin(x1) cos(x2) exp

(∣

∣

∣

∣

1−
√

x21+x22
π

∣

∣

∣

∣

)∣

∣

∣

∣

2 [− 10, 10] − 19.2085



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13977  | https://doi.org/10.1038/s41598-022-18351-0

www.nature.com/scientificreports/

Figure 3.   2-D Representation of benchmark functions.
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Finally, substituting L into Eq. (14), F(u) is derived as follows,

Now, by substituting L in Eq. (13), the new position can be measured by applying either of the following two 
equations:

L = ± 1

β
cosh−1

(

1√
u

)

.

(17)F(u) = ± cosh−1

(

1√
u

)

.

(a)X(t + 1) = K(t)+ 1

β
cosh−1

(

1√
u

)

,

Table 2.   Numerical results for unimodal benchmark functions.

Function D Algorithm Mean Best Worst STD Accuracy NSR Time(s)

F1 30

QSPSO 2.00 × 10−1 3.16 × 10−29 6.67 × 10−1 3.13 × 10−1 2.00 × 10−1 14 3.25

QPSO 2.67 × 10−1 2.10 × 10−29 6.67 × 10−1 3.35 × 10−1 2.67 × 10−1 12 3.50

PSO 2.49 × 10−1 2.49 × 10−1 2.49 × 10−1 5.70 × 10−17 2.49 × 10−1 0 4.52

JAYA​ 2.99 1.21 6.49 1.50 2.99 0 3.80

ISCA 6.67 × 10−1 6.67 × 10−1 6.67 × 10−1 8.47 × 10−6 6.67 × 10−1 0 4.01

F2 30

QSPSO 0 0 0 0 0 20 1.32

QPSO 5.76 × 10−5 3.33 × 10−9 4.19× 10−4 1.19× 10−4 5.76× 10−5 0 4.25

PSO 3.69 × 10−1 1.65 × 10−11 7.38 1.65 3.69 × 10−1 0 4.62

JAYA​ 4.05× 101 2.04× 101 1.01× 102 2.45× 101 4.05× 101 0 4.12

ISCA 2.64× 101 2.60× 101 2.67× 101 1.47× 10−1 2.64× 101 0 4.35

F3 30

QSPSO 0 0 0 0 0 20 2.47

QPSO 0 0 0 0 0 20 2.65

PSO 0 0 0 0 0 20 1.21

JAYA​ 2.83× 10−3 1.91× 10−3 4.28× 10−3 6.38× 10−4 283× 10−3 0 5.07

ISCA 9.75× 10−1 7.54× 10−1 1.25 1.09× 10−1 9.75× 10−1 0 4.67

F4 30

QSPSO 0 0 0 0 0 20 2.33

QPSO 0 0 0 0 0 20 2.25

PSO 0 0 0 0 0 20 1.36

JAYA​ 5.54× 10−1 3.06× 10−1 8.68× 10−1 1.24× 10−1 5.54× 10−1 0 4.21

ISCA 3.54 × 10−17 5.19 × 10−19 2.09 × 10−16 5.51 × 10−17 3.54 × 10−17 20 4.65

F5 30

QSPSO −4.93 × 103 − 4.93 × 103 − 4.93 × 103 0 0 20 2.45

QPSO − 4.93 × 103 − 4.93 × 103 − 4.93 × 103 0 0 20 2.68

PSO − 8.70 × 102 − 8.70 × 102 − 8.70 × 102 0 4.06× 103 0 4.34

JAYA​ − 3.50× 102 − 5.72× 102 1.31× 103 6.963× 10−1 4.58× 103 0 4.12

ISCA − 2.07× 102 − 4.58× 102 1.04× 103 3.11× 102 4.72× 103 0 4.25

F6 30

QSPSO 0 0 0 0 0 20 1.89

QPSO 0 0 0 0 0 20 2.12

PSO 0 0 0 0 0 20 1.66

JAYA​ 2.17× 101 8.92 3.88× 101 8.06 2.17× 101 0 4.78

ISCA 6.83× 10−16 0 1.90× 10−15 5.13× 10−16 6.83× 10−16 4 4.11

F7 30

QSPSO 0 0 0 0 0 20 1.61

QPSO 0 0 0 0 0 20 2.47

PSO 0 0 0 0 0 20 1.77

JAYA​ 8.76× 10−8 1.21× 10−9 7.31× 10−7 1.72× 10−7 8.76× 10−8 0 3.76

ISCA 0 0 0 0 0 20 2.71
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or

According to the quantum mechanical concepts, the quantum state (position) is undetermined until a meas-
urement takes place. So X(t + 1) can be updated either by (a) or (b). In the absence of observation, it is indeed a 
superposition of both. In computation, the random function has the same role as that of the observer in experi-
ments. To do so, let

where υ = rand[0, 1] , then, the search radius decreases linearly by multiplying with a factor w defined as follows,

where w0 and w1 are the initial and final values of w respectively. MaxIt is the maximum number of iterations 
and t is the current search iteration number. Therefore, Eq. (13) can rewritten as follows,

(b)X(t + 1) = K(t)− 1

β
cosh−1

(

1√
u

)

.

X(t + 1) =
{

(a) if 0.5 � υ � 1,
(b) if 0 � υ < 0.5,

(18)w = w1 +
(w0 − w1) × (MaxIt − t)

MaxIt
,

Table 3.   Numerical results for multimodal benchmark functions.

Function D Algorithm Mean Best Worst STD Accuracy NSR Time(s)

F8 30

QSPSO − 1.175 × 103 − 1.175 × 103 − 1.175 × 103 0 0 20 2.30

QPSO − 1.175 × 103 − 1.175 × 103 − 1.175 × 103 0 0 20 2.62

PSO − 1.175 × 103 − 1.175 × 103 − 1.175 × 103 0 0 20 1.40

JAYA​ − 6.85 × 102 − 7.27 × 102 − 6.437 × 102 2.30 × 101 4.90 × 102 0 5.23

ISCA − 9.10 × 102 − 9.50 × 102 − 8.65 × 102 2.37 × 101 2.65 × 102 0 5.35

F9 30

QSPSO 3.82 × 10−4 3.82 × 10−4 3.82 × 10−4 0 0 20 1.01

QPSO 1.09 × 101 3.82 × 10−4 2.17× 102 4.86× 101 1.09× 101 19 1.85

PSO 3.82 × 10−4 3.82 × 10−4 3.82 × 10−4 1.38 × 10−11 0 20 1.80

JAYA​ 6.95× 103 5.09× 103 7.50× 103 5.25× 102 6.95× 103 0 4.22

ISCA 7.62 × 103 6.86 × 103 8.04 × 103 2.62 × 102 7.62× 103 0 4.38

F10 30

QSPSO 0 0 0 0 0 18 3.02

QPSO 1.03× 101 5.68× 10−14 2.99× 101 1.41× 101 1.03× 101 11 4.81

PSO 3.89 1.71× 10−13 2.90× 101 8.90 2.89 12 3.92

JAYA​ 2.44× 102 2.06× 102 2.88× 102 1.95 × 101 2.44× 102 0 4.65

ISCA 8.13 × 101 2.28 × 101 1.20 × 102 2.70× 101 8.13 × 101 0 4.54

F11 30

QSPSO 0 0 0 0 0 20 0.82

QPSO 1.01 × 10−2 0 6.63× 10−2 1.63 × 10−2 1.01 × 10−2 12 4.10

PSO 1.15 × 10−2 0 5.63 × 10−2 1.83 × 10−2 1.15 × 10−2 11 4.31

JAYA​ 1.04 1.01 1.06 1.16× 10−2 1.04 0 4.79

ISCA 8.78 × 10−4 0 1.76 × 10−2 3.93 × 10−3 8.78 × 10−4 14 2.93

F12 30

QSPSO 9.52 × 10−14 3.29× 10−14 1.93 × 10−13 5.03 × 10−14 9.52 × 10−14 20 2.35

QPSO 1.91 × 10−13 5.06 × 10−14 2.16 × 10−12 4.67× 10−13 1.91 × 10−13 20 2.14

PSO 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 0 8.88 × 10−16 20 1.67

JAYA​ 5.63 2.38 2.00× 101 6.09 5.63 0 4.38

ISCA 4.48× 10−12 3.98× 10−14 1.36× 10−11 3.56× 10−12 4.48× 10−12 20 3.87

F13 30

QSPSO 0 0 0 0 0 20 1.99

QPSO 0 0 0 0 0 20 1.99

PSO 0 0 0 0 0 20 1.23

JAYA​ 5.18× 10−1 2.50× 10−1 1.41 2.77× 10−1 5.18× 10−1 0 4.11

ISCA 5.98× 10−1 5.07× 10−1 7.02× 10−1 6.48× 10−2 5.98× 10−1 0 4.49

F14 30

QSPSO − 1.89 − 1.93 − 1.02 2.04× 10−1 4.55× 10−2 19 2.57

QPSO − 1.79 − 1.93 − 1.02 5.94× 10−1 1.42× 10−1 15 3.06

PSO − 2.86× 10−1 − 2.86× 10−1 − 2.86× 10−1 7.73× 10−13 1.65 0 2.58

JAYA​ − 8.44× 10−1 − 1.93 − 2.86× 10−1 5.88× 10−1 1.09 0 3.73

ISCA − 3.95× 10−1 − 1.02 − 1.08× 10−3 4.70× 10−1 1.54 0 4.06
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The pseudo-code of the quantum soliton-inspired particle swarm optimization (QSPSO) algorithm is illus-
trated in Algorithm 2.

Xi(t + 1) =























Ki(t)+ w
�

�

�

1

M

M
�

i=1

pBesti (t)− Xi(t)
�

�

�
cosh−1

�

1√
u

�

if υ � 0.5

Ki(t)− w
�

�

�

1

M

M
�

i=1

pBesti (t)− Xi(t)
�

�

�
cosh−1

�

1√
u

�

if υ < 0.5

.

Table 4.   Numerical results for fixed dimension multimodal benchmark functions.

Function D Algorithm Mean Best Worst STD Accuracy NSR Time(s)

F15 5

QSPSO − 1.81× 102 − 1.87× 102 7.94× 101 2.40× 101 5.37 16 2.97

QPSO − 1.81× 102 − 1.87× 102 7.94× 101 2.40× 101 5.37 14 3.30

PSO 2.71× 10−29 1.97× 10−31 3.65× 10−28 8.04× 10−29 1.87× 102 0 4.62

JAYA​ − 1.87× 102 − 1.87× 102 − 1.86× 102 2.17× 10−1 1.47× 10−1 15 2.50

ISCA − 1.87× 102 − 1.87× 102 − 1.87× 102 2.00× 10−4 2.01× 10−4 20 1.74

F16 2

QSPSO 0 0 0 0 0 20 1.18

QPSO 0 0 0 0 0 20 0.92

PSO 0 0 0 0 0 20 0.87

JAYA​ 0 0 0 0 0 20 2.84

ISCA 0 0 0 0 0 20 1.15

F17 5

QSPSO − 4.70 − 4.71 − 4.67 1.63× 10−2 7.92× 10−3 17 2.10

QPSO − 4.70 − 4.71 − 4.67 1.45× 10−2 5.94 × 10−3 18 2.13

PSO − 2.46 − 2.46 − 2.46 2.28× 10−16 2.25 0 4.82

JAYA​ − 4.70 − 4.71 − 4.67 1.45× 10−2 5.94 × 10−3 18 2.83

ISCA − 4.68 − 4.71 − 4.66 1.15 × 10−2 3.10× 10−2 16 3.01

F18 2

QSPSO 3.00 3.00 3.00 4.23× 10−16 7.82× 10−14 20 0.81

QPSO 3.00 3.00 3.00 1.81× 10−16 7.82 × 10−14 20 0.96

PSO 3.27 × 101 3.27 × 101 3.27 × 101 0 2.97 × 101 0 4.42

JAYA​ 3.00 3.00 3.00 1.59× 10−4 1.93× 10−4 20 1.57

ISCA 3.00 3.00 3.00 4.78 × 10−8 5.24 × 10−8 20 1.39

F19 2

QSPSO − 2.06 − 2.06 − 2.06 0 0 20 1.28

QPSO − 2.06 − 2.06 − 2.06 0 0 20 1.25

PSO − 2.06 − 2.06 − 2.06 0 0 20 0.92

JAYA​ − 2.06 − 2.06 − 2.06 0 0 20 1.60

ISCA − 2.06 − 2.06 − 2.06 0 0 20 1.47

F20 30

QSPSO 0 0 0 0 0 20 1.41

QPSO 0 0 0 0 0 20 1.28

PSO 9.71 9.71 9.71 3.65× 10−15 9.71 0 2.20

JAYA​ 0 0 0 0 0 20 1.86

ISCA 2.70× 10−7 7.50× 10−9 1.10× 10−6 3.43× 10−7 2.70× 10−7 0 2.38

F21 30

QSPSO − 1.92× 101 − 1.92× 101 − 1.92× 101 6.87× 10−15 7.11× 10−15 17 1.36

QPSO − 1.92× 101 − 1.92× 101 − 1.92× 101 6.10× 10 × 10−15 7.11× 10−15 19 1.33

PSO − 1.51× 101 − 1.51× 101 − 1.51× 101 3.65× 10−15 4.07 0 2.82

JAYA​ − 1.92× 101 − 1.92× 101 − 1.88× 101 1.10× 10−1 4.84× 10−2 7 1.91

ISCA − 1.92× 101 − 1.92× 101 − 1.92× 101 9.56× 10−5 1.08× 10−4 6 1.62
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Figure 4.   The accuracy comparisons among optimization algorithms. (For each test function, the bar graphs 
belong to QSPSO, QPSO, PSO, JAYA, and ISCA from left to right, respectively).
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Table 5.   Reliability of and comparisons among algorithms ( %).

Functions QSPSO QPSO PSO JAYA​ ISCA

F1 70 60 0 0 0

F2 100 0 0 0 0

F3 100 100 100 0 0

F4 100 100 100 0 20

F5 100 100 0 0 0

F6 100 100 100 0 20

F7 100 100 100 0 100

F8 100 100 100 0 0

F9 100 95 100 0 0

F10 90 55 60 0 0

F11 100 60 55 0 70

F12 100 100 100 0 100

F13 100 100 100 0 0

F14 95 75 0 0 0

F15 80 70 0 75 100

F16 100 100 100 100 100

F17 85 90 0 90 80

F18 100 100 0 100 100

F19 100 100 100 100 100

F20 100 100 0 100 0

F21 85 95 0 35 30

Figure 5.   Convergence curves of the unimodal test functions.
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Experimental results
In order to measure and evaluate the performance of the proposed optimization algorithm, it is used to opti-
mize the set of known benchmark functions, including a selection of test functions with different modalities 
and dimensions (Table 1). These functions are categorized into three classes: unimodal, multimodal, and fixed 
multimodal functions. A function with a single global optimum is named unimodal. It may or may not be convex 
and is well for testing the exploitation of algorithms. Multimodal means that the function has more than one 
local optimum. It is a nonconvex function and is used to test the exploration process of an algorithm and evaluate 
the ability to escape from any local minimum. Some properties of the used benchmark functions are listed in 
Table 1 and Fig. 3, where D is the dimension of the function, fmin is the global optimal value and Range indicates 
the search space. In all experiments, 100 particles are considered as population size for 20 independent runs per 
function, with the best performance evaluation obtained after 1000 iterations. Computations are performed in 
MATLAB R2014 on a 2.3 GHz processor with 4 GB of RAM. To evaluate the performance of the algorithm, the 
following objective criteria are proposed in this paper which target both theexploitation and exploration ability 
of the algorithm. The first one is accuracy which is defined as the absolute value of the difference between the 
average (mean) value of the best solutions obtained in the last iteration over multiple runs of an algorithm and 
the optimal value. Success rate (SR), as the second measure is defined as the percentage of successful runs under 
a given level of accuracy (ε) and is defined as the number of successful runs (NSR) divided by the total number 
of experimental runs and the last measure is computational time performance (Time), which is the average 
execution time over multiple runs for each optimization algorithm. Moreover, to achieve a more comprehensive 
conclusion about the performance, we compare it with the results obtained by four other known algorithms on 
the same optimization problems: particle swarm optimization (PSO), standard quantum-behaved particle swarm 
optimization (QPSO), improved sine cosine algorithm (ISCA), and JAYA optimization algorithm.

The performance of QSPSO is measured in terms of accuracy, reliability, and computational time. Tables 2, 
3 and 4 show the performance results of each algorithm on the solution accuracy, reliability, and computational 
time for unimodal, multimodal, and fixed-multimodal benchmark functions respectively. In what follows, we 
compare the algorithms through these criteria.

Figure 6.   Convergence curves of the multimodal test functions.
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Comparisons on the solution accuracy.  Table 2 shows that QSPSO algorithm obtains the most accurate 
solution in the unimodal function F1, followed by PSO, QPSO, ISCA and JAYA. The QSPSO algorithm also has 
the best performance in the unimodal functions F2, F3, F4, F6 and F7. Along with QSPSO, PSO and QPSO also 
perform well and have the best performance in the unimodal functions F3, F4, F6, and F7. For F5, the results of 
QSPSO and QPSO are the most precise. Analyzing the results obtained from the multimodal benchmark func-
tions, it can be seen from Table 2 that QSPSO obtains the accurate solution and has an excellent performance 
in almost all of the test instances. It is apparent that PSO also has high accuracy and performs better than other 
methods on four of the benchmarks (F8, F9, F12, and F13) when searching for function minimum. QPSO also 
presents a high accuracy for F8, F12, and F13. Evaluating the algorithms for the fixed dimension multimodal 
benchmark functions shows that QPSO also performs well in most cases, followed by QSPSO. The best results 
for F15 and F16 are obtained by ISCA and JAYA respectively. ISCA and JAYA also have a good performance 
in the functions F16 and F19. From Table 4, we can see that among the seven fixed dimension functions, PSO 
performs poorly with F15, F17, F18, F20, and F21. Figure 4 shows the accuracy results of five algorithms for dif-
ferent benchmark functions.

Comparisons of the convergence speed and reliability.  Reliability or the success rate is computed as 
the percentage of experimental runs reaching optimal solutions. Table 5 shows the percentage of trials achiev-
ing acceptable solutions.It shows that compared to other algorithms, the QSPSO algorithm achieves consider-
ably better results and can reach acceptable solutions in more experiments over all the benchmark functions. 
Moreover, Figs. 5, 6 and 7 present the converging curves for the unimodal, multimodal, and fixed multimodal 
benchmark functions respectively. These graphs illustrate the mean of the best fitness value according to the ith 
iteration and help us to evaluate the convergence speed of the algorithm. From Fig. 5, it can be obtained that 
for the unimodal functions, OSPSO and OPSO algorithms behave almost the same for F1, F3, F4, and F5. In 
F2, F6, and F7, compare with QPSO, QSPSO converges faster and can reach the optimal point during the early 
stage of optimization. For F3, F4, F6, and F7 PSO performs well and sharply drops off and requires less iteration 
than QSPSO and QPSO. In this case, JAYA and ISCA show poor performance. For the multimodal functions, 

Figure 7.   Convergence curves of the fixed-multimodal test functions.
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Figure 6 shows that QSPSO almost performs better followed by PSO than the other algorithms. JAYA shows poor 
performance for multimodal functions. From Fig. 7, it can be realized that for each algorithm, there is a better 
performance depending on the function in the case of the fixed multimodal functions. All algorithms except 
PSO can reach the near-optimal point.

Comparisons on the computational time.  The comparison of the average running time of the pro-
posed algorithm with other well-known optimization algorithms is presented in Tables 2, 3 and 4. Figure 8 also 
shows the average running time for each optimization algorithm. As can be seen in most cases, the proposed 
algorithm is able to reach the optimum solution in a shorter time compared to the other mentioned algorithms.

Summary and conclusion
Quantum-behaved swarm optimization, as one of the most efficient variants of PSO, is a very effective and 
powerful technique that has been widely used in solving optimization problems. The QPSO in the common 
versions is based on the quantum behavior of particles under a limited potential which is generally described 
by the usual quantum schrödinger equation. By providing a few examples, we showed that solitons are the most 
common solutions to the quantum nonlinear Schrödinger equation. Solitons can be localized and stable even 
without a trapping potential and they can also reproduce and rearrange themselves in nonlinear conditions. 
So, in this study, we considered the quantum concept of particle-like solitons and introduced a new version of 
QPSO mentioned here as QSPSO. Implementing the algorithm on different types of benchmark functions and 
comparison to some state-of-art meta-heuristic algorithms, such as PSO, standard QPSO, ISCA, and JAYA, we 
showed that if the motion scenario of the algorithm is designed based on the corresponding probability density 
function of quantum solitons, the global search capability of the algorithm will be improved. According to 
numerical experiments, it is deduced that the new motion scenario which considers the quantum soliton prob-
ability density function, allows the particle to have a larger potential space to search and therefore less likely 
to be stuck in local optima. The results show that QSPSO has a good overall performance in terms of accuracy, 
reliability, and computational time. Regarding the obtained results, considering the other types of solitons and 
the related probability distributions as a candidate for the motion scenario would be interesting for future works.

Data availability
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